A28 Sturry Link Road, Canterbury

Hydraulic Modelling Report

February 2017
DOCUMENT VERIFICATION RECORD

<table>
<thead>
<tr>
<th>CLIENT:</th>
<th>Amey OW Limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCHEME:</td>
<td>A28 Sturry Link Road, Canterbury – Hydraulic Modelling report</td>
</tr>
<tr>
<td>INSTRUCTION:</td>
<td>The instruction to carry out this Hydraulic Modelling was received from Ms B. Shrestha of Amey OW Limited</td>
</tr>
</tbody>
</table>

DOCUMENT REVIEW & APPROVAL

<table>
<thead>
<tr>
<th>AUTHOR:</th>
<th>Dr Sandeep Bomminayuni B.Tech MS PhD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHECKER:</td>
<td>Chris Lewis MEng (Hons) CEng MICE</td>
</tr>
<tr>
<td>APPROVER:</td>
<td>Victoria Griffin BSc (Hon) MSc MIEnvSc CEnv</td>
</tr>
</tbody>
</table>

ISSUE HISTORY

<table>
<thead>
<tr>
<th>ISSUE DATE</th>
<th>COMMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>06/02/2017</td>
<td>First issue</td>
</tr>
<tr>
<td>09/02/2017</td>
<td>Minor updates following client review</td>
</tr>
</tbody>
</table>
Contents

Introduction .. 1
Hydraulic Modelling .. 3
Results & Conclusions .. 5
Conclusions .. 9

Appendices

Appendix A – Location Plan and Aerial Image
Appendix B – Survey Data
Appendix C – Proposed Development Details
Appendix D – EA Flood Map
Appendix E – 1D/2D Model Extents
Appendix F – Tabulated 1D Model Results Data
Appendix G – Flood Mapping

Figures

Figure 1 – Location Plan .. 1
Figure 2 – Maximum Flood Depth – 1% AEP + CC event ... 7
Figure 3 – Maximum Flood Depth – 0.1% AEP event ... 8
Figure 4 – Maximum Flood Depth Variation (DEV1 vs EXG) – 0.1% AEP .. 9

Tables

Table 1 – 2D Model Manning’s n Roughness Coefficients ... 4
Table 2 – Primary Simulation Summary .. 5
Introduction

Waterco Consultants have been commissioned to undertake a detailed hydraulic modelling study of the Great Stour watercourse flowing through Sturry, Canterbury, to investigate fluvial flood risk at the location of a proposed elevated road bridge spanning the river, hereafter referred to as the study area. The proposed bridge forms part of the wider A28 Sturry Link Road project which will connect the A28 Sturry Road to the A291 Herne Bay Road.

A location plan and an aerial photograph showing the proposed development are included in Appendix A; an extract of the location plan is included in Figure 1. The grid reference of the study area is 617015E 159990N.

The outputs of the hydraulic modelling study provide a detailed, up-to-date assessment of the existing fluvial flood risk at the study area and quantify the change in flood risk elsewhere as a result of the proposed development.

Figure 1 – Location Plan

Study Area Description and Proposed Development

The study area is located downstream to the Canterbury Waste Water Treatment Works (WWTW) off the A28 Sturry Road. The Great Stour bifurcates at this location; the main watercourse follows the southernmost channel and both channels generally flow in the west to east direction. The proposed bridge will also traverse the Ashford to Ramsgate Railway, located to the north of the watercourse.
A topographical survey of the study area was undertaken by Hook Survey Partnership in June 2015 and is provided in Appendix B for information. The survey shows existing levels from the study area to the A28 Sturry Road fall west to east, from a level of approximately 4.37m AOD from the western end to 2.78m AOD.

A raised railway embankment runs in a southwest-northeast orientation to the north of the River Great Stour at an approximate average elevation of 5.3m AOD. To the south of the river, the A28 Sturry Road runs in the same orientation as the railway line, also slightly raised above the adjacent floodplain at an approximate average elevation of 4.5m AOD.

The proposed link road is to span across the two branches of Great Stour at an elevated ground level via support piers. A proposed development plan is included in Appendix C.

A total of six spans are proposed, supported by five sets of support columns and north and south approach embankments/abutments. At the southern end of the proposed highway, access onto the A28 Sturry Road will be provided via a new roundabout at an approximate level of 4.7m AOD. From this location the proposed road level will increase up the southern bridge approach embankment to a level of 8.8m AOD from where the highway is carried by bridge sections. The proposed roundabout, southern embankment and support piers are located within the Great Stour floodplain.

Nearby Watercourses and Existing Flood Risk Data

The Great Stour is an Environment Agency (EA) designated ‘main river’ at this location.

The current EA Flood Maps for Planning (February 2017) shows the study area to be located within EA Flood Zone 3 – an area considered to be at high risk of fluvial flooding with an annual probability of the flooding greater than 1% (1 in 100) AEP. Both the A28 Sturry Road (at the location of the proposed roundabout) and the railway embankment are shown to be in EA Flood Zone 1 - land assessed as having a less than 1 in 1,000 annual probability of river or sea flooding (<0.1%). An extract of the current EA Flood Zones is included in Appendix D for reference.

The Great Stour is a tidally influenced watercourse; however the tidal extent is nearly 1km downstream from the study area at Fordwich; therefore tidal flooding has not been specifically included in this study, although its influence on model boundary conditions has been considered.

It is understood that the current Great Stour flood maps are based on the outputs of a detailed EA 1D/2D flood Modeller Pro-TUFLOW model (**Model ref: GStourM2**). To provide a site-specific assessment of fluvial flood risk at the study area, the existing EA 1D/2D hydraulic model has been updated and utilised. In addition to providing a more accurate assessment of fluvial flood risk at the existing site, the change in flood risk elsewhere (if any) arising as a result of the proposed development has been quantified.

1. A 1D/2D hydrodynamic model is comprised of a 1-Dimensional (1D) river network model (based on surveyed river cross-sections) coupled with a 2-Dimensional (2D) Digital Terrain Model (DTM) of the potential floodplain (created from LiDAR).
Hydraulic Modelling

A copy of the current EA Great Stour hydraulic model, GStourM2, has been sourced and used as the base for this study. To provide a more accurate assessment of flood risk at the study area, this model has been truncated to the local area and its resolution increased for improved accuracy.

Following an initial assessment of the existing fluvial flood risk through the study area, simulation outputs will be compared against those generated using the proposed development layout/levels to quantify the change in flood risk elsewhere as a result of the development, if any.

The latest version of the TUFLOW hydraulic modelling software 2016-03-AD available at the start of the project have been used for all simulations.

1D Model Details

The existing EA 1D FMP model network of Great Stour has been truncated to start at its two branches near Westwood Drive (NGR 615233 158800 and NGR 615292 158643) and end near Stour Valley Walk (NGR 618553 160099) in order to reduce run times. In total, approximately 5.9km of the Great Stour is modelled. The extent of the linked 1D/2D model is presented in Appendix E.

The upstream boundary of the truncated 1D model uses a discharge time (QT) boundary condition applied to the most upstream network line of Great Stour at two locations (Model network reference XS24 and S2_24X). Lateral inflow within the existing EA model is kept unchanged and applied in the truncated model.

At the downstream boundary of the truncated EA 1D model, a stage-time (HT) boundary condition has been applied (Model network reference 1-24704).

Both the upstream and downstream boundary conditions have been applied using QT and HT curves extracted from the existing EA model outputs.

Representation of structures within the model remains unchanged from the EA model. A small number of additional interpolated watercourse cross-sections were added into the EA model to improve 1D/2D model linkage and stability.

No other changes have been made to the existing EA 1D FMP model data, including river cross-sections, Manning’s n roughness etc.

2D Model Details

The existing EA 2D TUFLOW domain model extent has been truncated in line with the 1D model. The 2D domain is constructed primarily from 1m LiDAR data covering a total area of approximately 2.7km². The existing truncated EA model’s 2D Digital Terrain Model (DTM) has been updated to include site-specific topographical survey data (Appendix B).

The 2D cell size has been lowered from 6m in the existing EA model to 2m. This improvement in model resolution provides a more accurate representation of specific flow mechanisms local to the study area.
OS MasterMap data has been used to classify land use and assign Manning’s n roughness coefficients throughout the floodplain within the existing EA model. The coefficients used are given in Table 1 and remain unchanged for this study.

No other changes have been made to the existing EA 2D TUFLOW model.

To simulate and compare the proposed development arrangement (DEV1), an alternative 2D TUFLOW model domain has been created using the proposed level data provided (Appendix C), including the five support piers. Additionally, the DEV1 scenario model includes a representation of new 600mm diameter culvert underneath the proposed roundabout at A28 Sturry Road. The culvert, designed to maintain existing drainage ditch connectivity, is represented in the model using ESTRY - the 1D component of TUFLOW software.

Table 1 – 2D Model Manning’s n Roughness Coefficients

<table>
<thead>
<tr>
<th>Building</th>
<th>Manning’s n Roughness Coefficient (s/m(^{1/3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roads, Tracks and Paths</td>
<td>0.3</td>
</tr>
<tr>
<td>General surface – multi surface, step, structures</td>
<td>0.03</td>
</tr>
<tr>
<td>General surface</td>
<td>0.04</td>
</tr>
<tr>
<td>Glasshouse</td>
<td>0.2</td>
</tr>
<tr>
<td>Inland water</td>
<td>0.035</td>
</tr>
<tr>
<td>Landform, slope, cliff, Marsh Reeds or Saltmarsh</td>
<td>0.04</td>
</tr>
<tr>
<td>Boulders</td>
<td>0.045</td>
</tr>
<tr>
<td>Coniferous trees</td>
<td>0.1</td>
</tr>
<tr>
<td>Coniferous trees – scattered / Orchard, Scrub</td>
<td>0.05</td>
</tr>
<tr>
<td>Coppice or osiers</td>
<td>0.07</td>
</tr>
<tr>
<td>Non coniferous trees</td>
<td>0.07</td>
</tr>
<tr>
<td>Non-coniferous trees – scattered</td>
<td>0.04</td>
</tr>
<tr>
<td>Rough grassland</td>
<td>0.04</td>
</tr>
<tr>
<td>Rail, Road</td>
<td>0.02</td>
</tr>
<tr>
<td>Roadside</td>
<td>0.03</td>
</tr>
<tr>
<td>Structure – pylon</td>
<td>0.04</td>
</tr>
<tr>
<td>Tidal water – foreshore</td>
<td>0.035</td>
</tr>
<tr>
<td>Unclassified</td>
<td>0.04</td>
</tr>
<tr>
<td>Stability</td>
<td>0.3</td>
</tr>
</tbody>
</table>
Events considered

To fully investigate the fluvial flood risk through the study area during both the existing (EXG) baseline and proposed development (DEV1) scenarios, a range of fluvial events have been simulated; namely the 5% (Q20), 1% (Q100), and 0.1% (Q1000) AEP events. The impact of future climate change (CC) has also been investigated during the 1% AEP event by increasing flows by 35% (Q100CC) as agreed with the EA. Peak flows extracted from the existing EA model for use in the new truncated version are given in Table 2.

Table 2 – Primary Simulation Summary

<table>
<thead>
<tr>
<th>Fluvial Event (AEP)</th>
<th>Great Stour (@ Model c/s X524) - Peak Flows (m3/s)</th>
<th>Great Stour (@ Model c/s S2_24X) - Peak Flows (m3/s)</th>
<th>Great Stour – Lateral Inflows (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% (Q20)</td>
<td>12.97</td>
<td>34.05</td>
<td>1.26</td>
</tr>
<tr>
<td>1% (Q100)</td>
<td>19.16</td>
<td>41.11</td>
<td>1.88</td>
</tr>
<tr>
<td>1% + CC (Q100CC)</td>
<td>25.86</td>
<td>55.49</td>
<td>2.53</td>
</tr>
<tr>
<td>0.1% (Q1000)</td>
<td>24.81</td>
<td>54.10</td>
<td>3.25</td>
</tr>
</tbody>
</table>

Results & Conclusions

This section of the report documents the results obtained from the primary simulations, both EXG and DEV1 models.

Calculated maximum water levels were extracted at each node along the 1D network model and compared for each simulation. A table of this data has been provided in Appendix F. Maximum flood depth, velocity and hazard mapping has been provided for each primary simulation in Appendix G.

Flood hazard ratings have been calculated in accordance with DEFRA document ‘FD2320: Flood Risks to People’ and EA guidance document ‘Supplementary Note on Flood Hazard Ratings and Thresholds’.

EXG Simulations - Existing Site Arrangement

During all EXG events considered, the floodplain local to the proposed development area is shown to experience widespread flooding. The A28 Sturry Road at the study area is shown to be flood free for all events, up to and including the 0.1% AEP event.

Comparison of the modelled maximum flood extents and levels extracted from the truncated model against the original EA model show a very good correlation for all events.

Maximum flood depths of approximately 0.32m occur during the 5% AEP fluvial event with maximum water levels varying between 3.9- 4m AOD. Maximum velocity during this event is 0.36m/s and hazard rating varies between ‘Caution’ to ‘Danger for Most’.

During the 1% AEP event maximum water level varies between 4.0-4.15m AOD with a maximum water depth of approximately 0.45m in the floodplain. Maximum velocity increases to 0.7m/s and hazard rating varies between ‘Caution’ to ‘Danger for Most’.
When the impact of climate change (+35%) is considered during the 1% AEP event, maximum water depths in the floodplain increase to approximately 0.71m. Maximum water levels are approximately 4.25m AOD during this event at the study area. Maximum velocity increases to 0.8m/s and hazard rating varies between ‘Caution’ to ‘Danger for Most’. An extract of the maximum depth flood map for this event is given in Figure 2 for information.

During the 0.1% AEP event maximum flood depths are around 0.65m whereas the computed maximum water level is 4.2m AOD. It is noted that the 1% AEP + CC scenarios is more extreme than the 0.1% AEP event. Maximum velocity through the study area is around 0.8m/s and hazard rating varies between ‘Caution’ to ‘Danger for Most’. An extract of the maximum depth flood map for this event is given in Figure 3 for information.

DEV1 Simulations – Proposed Site Arrangement

When the development levels are considered, the proposed road bridge, including approach embankments and proposed A28 roundabout, is entirely flood free. The maximum water levels at the study area and wider flood plain in the DEV1 scenario remain almost identical to the EXG scenario during all the fluvial events considered – a maximum variation of in-channel flood level of +4mm is shown.

Maximum velocities through the model domain also remains almost identical with the exception of small areas local to the proposed support piers where maximum velocities are increased by approximately 0.2m/s in the DEV1 scenario relative to the EXG scenario during all the fluvial events considered. Extracts of the DEV1 scenario maximum depth flood map for 1% + CC and 0.1% AEP events are provided in Figure 2 and Figure 3 for information.

Flood Risk Elsewhere

The potential impact of the proposed development on flood risk elsewhere has been quantified by comparing the results of the existing (EXG) site layout simulations with the proposed (DEV1). To provide a detailed assessment of the relative changes in flood depths throughout the floodplain, a series of water level difference maps comparing the post- and pre-development maximum water levels have been created and are included in the DEV1 section of Appendix G.

The generated DEV1 flood maps show there is negligible change in the modelled flood extents relative to existing site arrangement for all events considered with a maximum variation of in-channel water levels +4mm.

During all events considered changes in maximum flood depth as a consequence of the proposed development are negligible (± 20mm). The encroachment of the proposed roundabout and southern approach embankment into the floodplain has little impact on comparative flood levels. An extract of the 0.1% AEP maximum depth difference map is provided in Figure 4 for reference.
Figure 2 – Maximum Flood Depth – 1% AEP + CC event

Existing Site Layout (EXG)

Proposed Site Layout (DEV1)
Figure 3 – Maximum Flood Depth – 0.1% AEP event

Existing Site Layout (EXG)

Proposed Site Layout (DEV1)
Conclusions

Overall, the proposed development arrangement is considered to have negligible impact on flood risk through the study area, therefore compensatory storage is not required.
Appendix A – Location Plan and Aerial Image
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

LEGEND

- Proposed Link Road

AERIAL PLAN

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
BASEMAP: WORLD IMAGERY. SOURCES: ESRI, DIGITALGLOBE, GEOCHE, I-CUBED, EARTHSAT Geographics, CNES/ARIUS DS, USDA, USGS, AEX, GETMAPPING, AEROGIS, IGN, IGP, SWISSTOPO, GIS USER COMMUNITY
Appendix B – Survey Data
Eaves and ridge heights of surrounding buildings have been surveyed where possible.

Drainage has been surveyed where found, and all trees are identified where possible. Species, spread, height and girth are indicative only.

Notes

Hook Survey Legend

- Banking
- Hedge
- Undergrowth
- Tree
- Bush
- Telephone line
- Power line
- Contour line
- Building
- Open Building
- Glass Building
- Gate
- Survey Station
- Level
- Ordnance Survey Benchmark
- Foul Drainage
- Storm Drainage

Abbreviations

- Air Valve
- Borehole
- Bus Stop
- Cover Level
- Fire Hydrant
- Inspection Cover
- Electricity Pole
- Invert Level
- Lamp Post
- Manhole
- Marker
- LP
- MH
- MK
- RNP
- Name Plate
- Road Sign
- RS
- Rodding Eye
- RE
- RSJ
- Reinforced Steel Joint
- Animal Sett
- Sett
- Stop Valve
- SV
- Survey Station
- STN
- TP
- Telegraph Pole
- Tree Stump
- Stump
- TH
- Trial Hole
- Unable To Lift
- UTL
- Vent Pipe
- VP
- SVP
- Soil Vent Pipe
- Rain water Pipe
- RWP
- Power Pole
- PP
- IL
- IC
- FH
- EP
- CL
- BH
- AV
- Water Valve
- WV

The Copyright of these Plans shall remain vested with Hook Survey Partnership who will grant an irrevocable licence for use by the Client once payment has been received in full. No Third Party may use the plans even if payment has been made to the Client but not received by the Company.

Please see our terms and conditions of supply at www.hooksurvey.com for further details.
have been surveyed where possible.
Eaves and ridge heights of surrounding buildings
are indicative only.
Drainage has been surveyed where found,
All trees are identified where possible.
Species, spread, height and girth

Hook Survey Legend
- Banking
- Hedge
- Undergrowth
- Tree
- Bush
- Telephone line
- Power line
- Contour line
- Building
- Open Building
- Glass Building
- Gate
- Survey Station
- Level
- Ordnance Survey Benchmark
- Foul Drainage
- Storm Drainage

Abbreviations
- Air Valve
- Borehole
- Bus Stop
- Cover Level
- Fire Hydrant
- Inspection Cover
- Electricity Pole
- Invert Level
- Lamp Post
- Manhole
- Marker
- LP
- MH
- MK
- RNP
- Name Plate
- Road Sign
- RS
- Rodding Eye
- RE
- RSJ
- Reinforced Steel Joint
- Animal Sett
- Sett
- Stop Valve
- SV
- Survey Station
- STN
- TP
- Telegraph Pole
- Tree Stump
- Stump
- TH
- Trial Hole
- Unable To Lift
- UTL
- Vent Pipe
- VP
- SVP
- Soil Vent Pipe
- Rain water Pipe
- RWP
- Power Pole
- PP
- IL
- IC
- FH
- EP
- CL
- BH
- AV
- Water Valve
- WV
- SVP

The Copyright of these Plans shall remain vested with Hook Survey Partnership who will grant an
irrevocable licence for use by the Client once payment has been received in full. No Third Party
may use the plans even if payment has been made to the Client but not received by the Company.
Please see our terms and conditions of supply at www.hooksurvey.com for further details.

The Environ Design (Sturry) Limited
Land at Sturry Hill, Sturry,
Canterbury, Kent, CT2 0NG
Job No. :
Scale :
Client :
Project :
Revision :
Drawn by :
Dwg No. :
Date :
S15/4717/31
June 2015

Hook Survey Partnership
Head Office
Unit 1, Bybow Farm
Orchard Way
Dartford, Kent
DA2 7ER
Email > mail@hooksurvey.com
Tel 01322 277221

Midlands Office
54 Stratford Road
Shipston on Stour
Warwickshire
CV36 4AZ
Email > midlands@hooksurvey.com
Tel 01608 430346

Land & Building Surveyors
at a scale of 1.0000 based around Stations H1 & H2
Psuedo Ordnance Survey Coordinate System
GREAT STOUR

Eaves and ridge heights of surrounding buildings are indicative only.

Drainage has been surveyed where found,

All trees are identified where possible.

Species, spread, height and girth

Notes

Hook Survey Legend
Banking
Hedge
Undergrowth
Tree
Bush
Telephone line
Power line
Contour line
Building
Open Building
Glass Building
Gate
Survey Station
Level
Ordnance Survey Benchmark
Foul Drainage
Storm Drainage
Abbreviations
Air Valve
Borehole
Bus Stop
Cover Level
Fire Hydrant
Inspection Cover
Electricity Pole
Invert Level
Lamp Post
Manhole
Marker
LP
MH
MK
RNP
Name Plate
Road Sign
RS
Rodding Eye
RE
RSJ
Reinforced Steel Joint
Animal Sett
Sett
Stop Valve
SV
Survey Station
STN
TP
Telegraph Pole
Telegraph Pole
Trial Hole
Unable To Lift
UTL
Vent Pipe
Soil Vent Pipe
Rain water Pipe
Power Pole
Power Pole
IL
IC
FH
EP
CL
BH
AV
Water Valve
WV

The Copyright of these Plans shall remain vested with Hook Survey Partnership who will grant an irrevocable licence for use by the Client once payment has been received in full. No Third Party may use the plans even if payment has been made to the Client but not received by the Company.

Please see our terms and conditions of supply at www.hooksurvey.com for further details.

Scale
0
5
Metres

Grid & Levels related to:
1:200

Topographical Survey Drawing title:
S15/4717
Environ Design (Sturry) Limited
Land at Sturry Hill, Sturry, Canterbury, Kent, CT2 0NG
Job No.:
Scale:
Client:
Project:
Revision:
Drawn by:
Dwg No.:
Date:
S15/4717/32
June 2015
D.S.

- Head Office
Unit 1, Bybow Farm
Orchard Way
Dartford, Kent
DA2 7ER
Email > mail@hooksurvey.com
Tel > 01322 277221

Midlands Office
54 Stratford Road
Shipston on Stour
Warwickshire
CV36 4AZ
Email > midlands@hooksurvey.com
Tel > 01608 430346

Land & Building Surveyors at a scale of 1:0000 based around Stations H1 & H2 Psuedo Ordnance Survey Coordinate System

HOOK SURVEY PARTNERSHIP
Sheet Layout
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Drainage has been surveyed where found.

All trees are identified where possible.

Species, spread, height and girth

Notes

Hook Survey Legend

Banking
Hedge
Undergrowth
Tree
Bush
Telephone line
Power line
Contour line
Building
Open Building
Glass Building
Gate
Survey Station
Level
Ordnance Survey Benchmark
Foul Drainage
Storm Drainage

Abbreviations

Air Valve
Borehole
Bus Stop
Cover Level
Fire Hydrant
Inspection Cover
Electricity Pole
Invert Level
Lamp Post
Manhole
Marker
LP
MH
MK
RNP
Name Plate
Road Sign
RS
Rodding Eye
RE
RSJ
Reinforced Steel Joint
Animal Sett
Sett
Stop Valve
SV
Survey Station
STN
TP
Telegraph Pole
Trial Hole
Unable To Lift
UTL
Vent Pipe
Soil Vent Pipe
Rain water Pipe
Power Pole
IL
IC
FH
EP
CL
BH
AV
Name Plate
Water Valve
WV

The Copyright of these Plans shall remain vested with Hook Survey Partnership who will grant an irrevocable licence for use by the Client once payment has been received in full. No Third Party may use the plans even if payment has been made to the Client but not received by the Company.

Please see our terms and conditions of supply at www.hooksurvey.com for further details.
No. 1
No. 3
have been surveyed where possible.
Eaves and ridge heights of surrounding buildings
and traced where possible.
Drainage has been surveyed where found,
All trees are identified where possible.
Species, spread, height and girth
Notes

Hook Survey Legend
Banking
Hedge
Undergrowth
Tree
Bush
Telephone line
Power line
Contour line
Building
Open Building
Glass Building
Gate
Survey Station
Level
Ordnance Survey Benchmark
Foul Drainage
Storm Drainage
Abbreviations
Air Valve
Borehole
Bus Stop
Cover Level
Fire Hydrant
Inspection Cover
Electricity Pole
Invert Level
Lamp Post
Manhole
Marker
LP
MH
MK
RNP
Name Plate
Road Sign
RS
Rodding Eye
RE
RSJ
Reinforced Steel Joint
Animal Sett
Sett
TH
Stop Valve
SV
Survey Station
STN
TP
Telegraph Pole
Trial Hole
Unable To Lift
UTL
Vent Pipe
Soil Vent Pipe
Rain water Pipe
Power Pole
Water Valve

The Copyright of these Plans shall remain vested with Hook Survey Partnership who will grant an
irrevocable licence for use by the Client once payment has been received in full. No Third Party
may use the plans even if payment has been made to the Client but not received by the Company.
Please see our terms and conditions of supply at www.hooksurvey.com for further details.

Earth Rod
Scale

Grid & Levels related to:
1:200
Topographical Survey

Drawing title:
S15/4717
Environ Design (Sturry) Limited
Land at Sturry Hill, Sturry,
Canterbury, Kent, CT2 0NG
Job No.:
Scale:
Client:
Project:
Revision:
Drawn by:
Dwg No.:
Date:

S15/4717/38
June 2015
D.S.

Head Office
Unit 1, Bybow Farm
Orchard Way
Dartford, Kent
DA2 7ER
Email
> mail@hooksurvey.com
Tel
> 01322 277221

Midlands Office
54 Stratford Road
Shipston on Stour
Warwickshire
CV36 4AZ
Email
> midlands@hooksurvey.com
Tel
> 01608 430346

Land & Building Surveyors
at a scale of 1.0000 based around Stations H1 & H2
Psuedo Ordnance Survey Coordinate System
HOOK
SURVEY
PARTNERSHIP
Sheet Layout
Appendix C – Proposed Development Details
Earthworks slopes amended to 1 in 2.5

Pier 1 moved to Ch.212.5

24.11.16
Appendix D – EA Flood Map
NOTES:
1. ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

LEGEND
- Proposed Link Road
- EA Main Rivers
- EA Flood Zone 2
- EA Flood Zone 3

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
© ENVIRONMENT AGENCY COPYRIGHT AND/OR DATABASE RIGHT 2017. ALL RIGHTS RESERVED. SOME FEATURES OF THIS MAP ARE BASED ON DIGITAL SPATIAL DATA FROM THE CENTRE FOR ECOLOGY AND HYDROLOGY, © NERC (CEH). © CROWN COPYRIGHT AND DATABASE RIGHTS 2004 ORDNANCE SURVEY 100024198
Appendix E – 1D/2D Model Extents
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDANANCE DATUM UNLESS STATED OTHERWISE.

LEGEND
- Proposed Link Road (for info only)
- 1D Network
- 1D Model Node
- 1D Inflow
- Downstream Boundary
- 2D Model Boundary

0 0.1 0.2 0.4 0.6 0.8 1 m
0 50 100 200 300 400 500 m

DATE: 03/02/2017
PLOT NAME: w3254-Model_Extent
REV: B
DRAWN: SB
CHECKED: RCL
APPROVED: VG
PLOT SCALE @ A3: 1:12,000
PLOT STATUS: FINAL
PLOT TITLE: 1D/2D MODEL EXTENT

SCHEME:
A28 STURRY LINK ROAD, CANTERBURY

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDANANCE DATUM UNLESS STATED OTHERWISE.

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840

0 0.1 0.2 0.4 0.6 0.8 1 km
0 50 100 200 300 400 500 m

PLOT SCALE @ A3: 1:5,000
Appendix F – Tabulated 1D Model Results Data
Hydraulic Model Results - Great Stour @ Sturry, Canterbury

1D Model Results - Maximum Water Levels (mAOD)

Job Name: Sturry Link, Canterbury
Job Number: w3254
Model Type: FMP-TUFLOW
Date: 24/01/17

Existing Site Arrangement (EXG) Simulations

<table>
<thead>
<tr>
<th>Model Ref</th>
<th>Event Details</th>
<th>Q20 EXG</th>
<th>Q100 EXG</th>
<th>Q1000 EXG</th>
<th>Q10000 EXG</th>
</tr>
</thead>
<tbody>
<tr>
<td>X524</td>
<td>Max WL (mAOD)</td>
<td>5.905</td>
<td>6.134</td>
<td>6.373</td>
<td>6.343</td>
</tr>
<tr>
<td>X525</td>
<td></td>
<td>5.822</td>
<td>6.095</td>
<td>6.366</td>
<td>6.333</td>
</tr>
<tr>
<td>X525D1</td>
<td></td>
<td>5.706</td>
<td>5.879</td>
<td>6.125</td>
<td>6.094</td>
</tr>
<tr>
<td>X525D2</td>
<td></td>
<td>5.706</td>
<td>5.879</td>
<td>6.125</td>
<td>6.094</td>
</tr>
<tr>
<td>X526</td>
<td></td>
<td>5.684</td>
<td>5.795</td>
<td>6.101</td>
<td>6.095</td>
</tr>
<tr>
<td>X528</td>
<td></td>
<td>5.464</td>
<td>5.750</td>
<td>6.022</td>
<td>5.968</td>
</tr>
<tr>
<td>X528I</td>
<td></td>
<td>5.588</td>
<td>5.739</td>
<td>6.032</td>
<td>5.966</td>
</tr>
<tr>
<td>X527</td>
<td></td>
<td>5.539</td>
<td>5.738</td>
<td>6.031</td>
<td>6.000</td>
</tr>
<tr>
<td>X527D</td>
<td></td>
<td>5.539</td>
<td>5.738</td>
<td>6.031</td>
<td>6.000</td>
</tr>
</tbody>
</table>

Proposed Development Arrangement (DEV1) Simulations

**Model Ref | Event Details | Q20 DEV1 | Q100 DEV1 | Q1000 DEV1 | Q10000 DEV1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20 DEV1</td>
<td>Max WL (mAOD)</td>
<td>5.905</td>
<td>6.134</td>
<td>6.373</td>
<td>6.343</td>
</tr>
<tr>
<td>1% AEP Event; DEV1; Normal Flow Conditions (NFC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q100 DEV1</td>
<td></td>
<td>5.822</td>
<td>6.095</td>
<td>6.366</td>
<td>6.333</td>
</tr>
<tr>
<td>1% AEP Event; DEV1; NFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q1000 DEV1</td>
<td></td>
<td>5.706</td>
<td>5.879</td>
<td>6.125</td>
<td>6.094</td>
</tr>
<tr>
<td>1% AEP +35% CC Event; DEV1; NFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q10000 DEV1</td>
<td></td>
<td>5.684</td>
<td>5.795</td>
<td>6.101</td>
<td>6.095</td>
</tr>
<tr>
<td>0.1% AEP Event; DEV1; NFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>Max WL (mAOD)</th>
<th>WL Diff vs Q20 EXG (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XS24</td>
<td>5.905</td>
<td>0.000</td>
</tr>
<tr>
<td>XS25</td>
<td>5.822</td>
<td>0.000</td>
</tr>
<tr>
<td>XS25D1</td>
<td>5.706</td>
<td>0.000</td>
</tr>
<tr>
<td>XS25D2</td>
<td>5.706</td>
<td>0.000</td>
</tr>
<tr>
<td>XS26</td>
<td>5.464</td>
<td>0.000</td>
</tr>
<tr>
<td>XS28</td>
<td>5.588</td>
<td>0.000</td>
</tr>
<tr>
<td>XS27</td>
<td>5.539</td>
<td>0.000</td>
</tr>
<tr>
<td>XS27D</td>
<td>5.539</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Event Details

<table>
<thead>
<tr>
<th>Event</th>
<th>Study Area</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>5% AEP Event; DEV1; NFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% AEP Event; DEV1; NFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1% AEP +35% CC Event; DEV1; NFC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.1% AEP Event; DEV1; NFC</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation Results.xlsx
Hydraulic Model Results - Great Stour @ Sturry, Canterbury

1D Model Results - Maximum Water Levels (mAOD)

<table>
<thead>
<tr>
<th>Job Name:</th>
<th>Sturry Link, Canterbury</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Number:</td>
<td>w3254</td>
</tr>
<tr>
<td>Model Type:</td>
<td>FMP-TUFLOW</td>
</tr>
</tbody>
</table>

Existing Site Arrangement (EXG) Simulations

<table>
<thead>
<tr>
<th>Model Ref</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20 EXG</td>
<td>5% AEP Event; EXG; Normal Flow Conditions (NFC)</td>
</tr>
<tr>
<td>Q100 EXG</td>
<td>1% AEP Event; EXG; NFC</td>
</tr>
<tr>
<td>Q100CC EXG</td>
<td>1% AEP +35% CC Event; EXG; NFC</td>
</tr>
<tr>
<td>Q1000 EXG</td>
<td>1% AEP Event; EXG; NFC</td>
</tr>
</tbody>
</table>

Proposed Development Arrangement (DEV1) Simulations

<table>
<thead>
<tr>
<th>Model Ref</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20 DEV1</td>
<td>5% AEP Event; DEV1; Normal Flow Conditions (NFC)</td>
</tr>
<tr>
<td>Q100 DEV1</td>
<td>1% AEP Event; DEV1; NFC</td>
</tr>
<tr>
<td>Q100CC DEV1</td>
<td>1% AEP +35% CC Event; DEV1; NFC</td>
</tr>
<tr>
<td>Q1000 DEV1</td>
<td>1% AEP Event; DEV1; NFC</td>
</tr>
</tbody>
</table>

Node Ref: Max WL (mAOD)

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>Max WL (mAOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20</td>
<td>3.627</td>
</tr>
<tr>
<td>Q100</td>
<td>3.802</td>
</tr>
<tr>
<td>Q100CC</td>
<td>3.795</td>
</tr>
<tr>
<td>Q1000</td>
<td>3.802</td>
</tr>
</tbody>
</table>

WL Diff vs Q20 EXG (m)

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>WL Diff vs Q20 EXG (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20-43WD</td>
<td>0.000</td>
</tr>
<tr>
<td>Q20-43D</td>
<td>0.000</td>
</tr>
<tr>
<td>Q20-43Di</td>
<td>0.000</td>
</tr>
</tbody>
</table>

WL Diff vs Q100 EXG (m)

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>WL Diff vs Q100 EXG (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q100-43WD</td>
<td>0.000</td>
</tr>
<tr>
<td>Q100-43D</td>
<td>0.000</td>
</tr>
<tr>
<td>Q100-43Di</td>
<td>0.000</td>
</tr>
</tbody>
</table>

WL Diff vs Q100CC EXG (m)

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>WL Diff vs Q100CC EXG (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q100CC-43WD</td>
<td>0.000</td>
</tr>
<tr>
<td>Q100CC-43D</td>
<td>0.000</td>
</tr>
<tr>
<td>Q100CC-43Di</td>
<td>0.000</td>
</tr>
</tbody>
</table>

WL Diff vs Q1000 EXG (m)

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>WL Diff vs Q1000 EXG (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1000-43WD</td>
<td>0.000</td>
</tr>
<tr>
<td>Q1000-43D</td>
<td>0.000</td>
</tr>
<tr>
<td>Q1000-43Di</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Event Details

- **5% AEP Event; DEV1; NFC**
- **1% AEP Event; DEV1; NFC**
- **0.1% AEP Event; DEV1; NFC**
- **5% AEP Event; EXG; NFC**
- **1% AEP Event; EXG; NFC**
- **0.1% AEP Event; EXG; NFC**

Simulation Results

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>Max WL (mAOD)</th>
<th>WL Diff vs Q20 EXG (m)</th>
<th>WL Diff vs Q100 EXG (m)</th>
<th>WL Diff vs Q100CC EXG (m)</th>
<th>WL Diff vs Q1000 EXG (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>43WD</td>
<td>3.627</td>
<td>0.000</td>
<td>3.708</td>
<td>0.000</td>
<td>3.810</td>
</tr>
<tr>
<td>43D</td>
<td>3.627</td>
<td>0.000</td>
<td>3.708</td>
<td>0.000</td>
<td>3.810</td>
</tr>
<tr>
<td>43Di</td>
<td>3.627</td>
<td>0.000</td>
<td>3.708</td>
<td>0.000</td>
<td>3.810</td>
</tr>
<tr>
<td>Q20-43WD</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q20-43D</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Q20-43Di</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation Results.xlsx
Hydraulic Model Results - Great Stour @ Sturry, Canterbury

1D Model Results - Maximum Water Levels (mAOD)

Job Name: Sturry Link, Canterbury
Job Number: w3254
Model Type: FMP-TUFLOW
Date: 24/01/17

<table>
<thead>
<tr>
<th>Model Ref</th>
<th>Event Details</th>
<th>Q20 EXG</th>
<th>Q100 EXG</th>
<th>Q100 CC EXG</th>
<th>Q1000 EXG</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXG</td>
<td>Q20 EXG</td>
<td>3.935</td>
<td>4.065</td>
<td>4.221</td>
<td>4.205</td>
</tr>
<tr>
<td></td>
<td>Q100 EXG</td>
<td>3.930</td>
<td>4.055</td>
<td>4.213</td>
<td>4.198</td>
</tr>
<tr>
<td></td>
<td>Q1000 EXG</td>
<td>3.911</td>
<td>4.047</td>
<td>4.209</td>
<td>4.193</td>
</tr>
<tr>
<td></td>
<td>Q100 CC EXG</td>
<td>3.903</td>
<td>4.032</td>
<td>4.211</td>
<td>4.184</td>
</tr>
<tr>
<td></td>
<td>Q1000 CC EXG</td>
<td>3.902</td>
<td>4.043</td>
<td>4.203</td>
<td>4.194</td>
</tr>
<tr>
<td></td>
<td>Q10000 EXG</td>
<td>3.900</td>
<td>4.032</td>
<td>4.201</td>
<td>4.191</td>
</tr>
</tbody>
</table>

Model Ref | **Event Details** | **Q20 DEV1** | **Q100 DEV1** | **Q100 CC DEV1** | **Q1000 DEV1** |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DEV1</td>
<td>Q20 DEV1</td>
<td>3.935</td>
<td>-0.001</td>
<td>4.094</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>Q100 DEV1</td>
<td>3.920</td>
<td>0.000</td>
<td>4.055</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>Q100 CC DEV1</td>
<td>3.911</td>
<td>0.000</td>
<td>4.046</td>
<td>-0.001</td>
</tr>
<tr>
<td></td>
<td>Q1000 DEV1</td>
<td>3.903</td>
<td>0.000</td>
<td>4.036</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Event Details

- **5% AEP Event; DEV1; Normal Flow Conditions (NFC)**
- **1% AEP Event; DEV1; NFC**
- **1% AEP + 35% CC Event; DEV1; NFC**
- **0.1% AEP Event; DEV1; NFC**

Node Ref: Max WL

<table>
<thead>
<tr>
<th>Node Ref:</th>
<th>Max WL (mAOD)</th>
<th>Max WL (mAOD)</th>
<th>Max WL (mAOD)</th>
<th>Max WL (mAOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S3_3X</td>
<td>3.935</td>
<td>4.065</td>
<td>4.221</td>
<td>4.205</td>
</tr>
<tr>
<td>S3_3XX</td>
<td>3.930</td>
<td>4.055</td>
<td>4.213</td>
<td>4.198</td>
</tr>
<tr>
<td>S3_3XH</td>
<td>3.911</td>
<td>4.047</td>
<td>4.209</td>
<td>4.193</td>
</tr>
<tr>
<td>S3_3XH1</td>
<td>3.903</td>
<td>4.032</td>
<td>4.211</td>
<td>4.184</td>
</tr>
<tr>
<td>S3_3XJ</td>
<td>3.902</td>
<td>4.043</td>
<td>4.203</td>
<td>4.194</td>
</tr>
<tr>
<td>S3_3XJ1</td>
<td>3.900</td>
<td>4.032</td>
<td>4.201</td>
<td>4.191</td>
</tr>
<tr>
<td>S3_3XU</td>
<td>3.935</td>
<td>4.065</td>
<td>4.221</td>
<td>4.205</td>
</tr>
<tr>
<td>S3_3XU1</td>
<td>3.930</td>
<td>4.055</td>
<td>4.213</td>
<td>4.198</td>
</tr>
<tr>
<td>S3_3XW</td>
<td>3.911</td>
<td>4.047</td>
<td>4.209</td>
<td>4.193</td>
</tr>
<tr>
<td>S3_3XW1</td>
<td>3.903</td>
<td>4.032</td>
<td>4.211</td>
<td>4.184</td>
</tr>
<tr>
<td>S3_3Y</td>
<td>3.902</td>
<td>4.043</td>
<td>4.203</td>
<td>4.194</td>
</tr>
<tr>
<td>S3_3Y1</td>
<td>3.900</td>
<td>4.032</td>
<td>4.201</td>
<td>4.191</td>
</tr>
<tr>
<td>S3_4XU</td>
<td>3.935</td>
<td>4.065</td>
<td>4.221</td>
<td>4.205</td>
</tr>
<tr>
<td>S3_4XU1</td>
<td>3.930</td>
<td>4.055</td>
<td>4.213</td>
<td>4.198</td>
</tr>
<tr>
<td>S3_4XU2</td>
<td>3.911</td>
<td>4.047</td>
<td>4.209</td>
<td>4.193</td>
</tr>
<tr>
<td>S3_4XU3</td>
<td>3.903</td>
<td>4.032</td>
<td>4.211</td>
<td>4.184</td>
</tr>
<tr>
<td>S3_4XU4</td>
<td>3.902</td>
<td>4.043</td>
<td>4.203</td>
<td>4.194</td>
</tr>
<tr>
<td>S3_4XU5</td>
<td>3.900</td>
<td>4.032</td>
<td>4.201</td>
<td>4.191</td>
</tr>
</tbody>
</table>

Proposed Development Arrangement (DEV1)

<table>
<thead>
<tr>
<th>Model Ref</th>
<th>Event Details</th>
<th>Q20 DEV1</th>
<th>Q100 DEV1</th>
<th>Q1000 DEV1</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEV1</td>
<td>Q20 DEV1</td>
<td>3.935</td>
<td>-0.001</td>
<td>4.094</td>
</tr>
<tr>
<td></td>
<td>Q100 DEV1</td>
<td>3.920</td>
<td>0.000</td>
<td>4.055</td>
</tr>
<tr>
<td></td>
<td>Q100 CC DEV1</td>
<td>3.911</td>
<td>0.000</td>
<td>4.046</td>
</tr>
<tr>
<td></td>
<td>Q1000 DEV1</td>
<td>3.903</td>
<td>0.000</td>
<td>4.036</td>
</tr>
</tbody>
</table>

WL Diff

- **Max WL (mAOD)**
 - vs Q20 EXG
 - vs Q100 EXG
 - vs Q100 CC EXG
 - vs Q1000 EXG

Existing Site Layout (EXG)

- **Node Ref:** Max WL (mAOD)

Proposed Site Layout (DEV1)

- **Node Ref:** Max WL (mAOD)
- **Node Ref:** WL Diff vs Q20 EXG (m)
- **Node Ref:** WL Diff vs Q100 EXG (m)
- **Node Ref:** WL Diff vs Q100 CC EXG (m)
- **Node Ref:** WL Diff vs Q1000 EXG (m)
Existing Site Arrangement (EXG) Simulations

<table>
<thead>
<tr>
<th>Model Ref</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20 EXG</td>
<td>5% AEP Event; EXG, Normal Flow Conditions (NFC)</td>
</tr>
<tr>
<td>Q100 EXG</td>
<td>1% AEP Event, EXG, NFC</td>
</tr>
<tr>
<td>Q100CC EXG</td>
<td>1% AEP +35% CC Event, EXG, NFC</td>
</tr>
<tr>
<td>Q1000 EXG</td>
<td>0.1% AEP Event, EXG, NFC</td>
</tr>
</tbody>
</table>

Proposed Development Arrangement (DEV1) Simulations

<table>
<thead>
<tr>
<th>Model Ref</th>
<th>Event Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q20 DEV1</td>
<td>5% AEP Event, DEV1, Normal Flow Conditions (NFC)</td>
</tr>
<tr>
<td>Q100 DEV1</td>
<td>1% AEP Event, DEV1, NFC</td>
</tr>
<tr>
<td>Q100CC DEV1</td>
<td>1% AEP +35% CC Event, DEV1, NFC</td>
</tr>
<tr>
<td>Q1000 DEV1</td>
<td>0.1% AEP Event, DEV1, NFC</td>
</tr>
</tbody>
</table>

Existing Site Layout (EXG)

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>Max WL (nAOD)</th>
<th>Max WL (nAOD)</th>
<th>Max WL (nAOD)</th>
<th>Max WL (nAOD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XS26</td>
<td>5.332</td>
<td>5.720</td>
<td>5.983</td>
<td>5.954</td>
</tr>
<tr>
<td>XS29</td>
<td>5.500</td>
<td>5.700</td>
<td>5.962</td>
<td>5.932</td>
</tr>
<tr>
<td>XS29i</td>
<td>5.433</td>
<td>5.632</td>
<td>5.903</td>
<td>5.872</td>
</tr>
<tr>
<td>XS30</td>
<td>5.230</td>
<td>5.528</td>
<td>5.814</td>
<td>5.784</td>
</tr>
<tr>
<td>XS30i</td>
<td>5.230</td>
<td>5.495</td>
<td>5.775</td>
<td>5.746</td>
</tr>
<tr>
<td>XS31</td>
<td>5.085</td>
<td>5.238</td>
<td>5.409</td>
<td>5.434</td>
</tr>
<tr>
<td>XS31i</td>
<td>4.946</td>
<td>5.055</td>
<td>5.211</td>
<td>5.190</td>
</tr>
<tr>
<td>SX26</td>
<td>4.863</td>
<td>5.079</td>
<td>5.354</td>
<td>5.328</td>
</tr>
<tr>
<td>SX29</td>
<td>4.747</td>
<td>4.963</td>
<td>5.060</td>
<td>5.244</td>
</tr>
<tr>
<td>SX29i</td>
<td>4.694</td>
<td>4.933</td>
<td>5.086</td>
<td>5.225</td>
</tr>
<tr>
<td>SX32</td>
<td>4.631</td>
<td>4.876</td>
<td>5.207</td>
<td>5.171</td>
</tr>
<tr>
<td>SX32i</td>
<td>4.536</td>
<td>4.767</td>
<td>5.171</td>
<td>5.066</td>
</tr>
<tr>
<td>SX36</td>
<td>5.905</td>
<td>6.134</td>
<td>6.373</td>
<td>6.343</td>
</tr>
<tr>
<td>SX36_i</td>
<td>6.713</td>
<td>6.924</td>
<td>7.186</td>
<td>7.165</td>
</tr>
<tr>
<td>SX36_j</td>
<td>5.085</td>
<td>5.228</td>
<td>5.409</td>
<td>5.434</td>
</tr>
<tr>
<td>SX36_k</td>
<td>4.021</td>
<td>4.145</td>
<td>4.291</td>
<td>4.277</td>
</tr>
<tr>
<td>SX36_m</td>
<td>3.905</td>
<td>4.041</td>
<td>4.204</td>
<td>4.187</td>
</tr>
<tr>
<td>SX36_n</td>
<td>3.905</td>
<td>4.041</td>
<td>4.204</td>
<td>4.187</td>
</tr>
<tr>
<td>SX36_o</td>
<td>3.904</td>
<td>4.039</td>
<td>4.196</td>
<td>4.182</td>
</tr>
<tr>
<td>SX36_p</td>
<td>3.904</td>
<td>4.039</td>
<td>4.196</td>
<td>4.182</td>
</tr>
</tbody>
</table>

Proposed Site Layout (DEV1)

<table>
<thead>
<tr>
<th>Node Ref</th>
<th>Max WL (nAOD)</th>
<th>WL Diff vs Q20 EXG (m)</th>
<th>Max WL (nAOD)</th>
<th>WL Diff vs Q100 EXG (m)</th>
<th>Max WL (nAOD)</th>
<th>WL Diff vs Q100CC EXG (m)</th>
<th>Max WL (nAOD)</th>
<th>WL Diff vs Q1000 EXG (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>XS26</td>
<td>5.332</td>
<td>0.000</td>
<td>5.720</td>
<td>0.000</td>
<td>5.983</td>
<td>0.000</td>
<td>5.954</td>
<td>0.000</td>
</tr>
<tr>
<td>XS29</td>
<td>5.500</td>
<td>0.000</td>
<td>5.700</td>
<td>0.000</td>
<td>5.962</td>
<td>0.000</td>
<td>5.932</td>
<td>0.000</td>
</tr>
<tr>
<td>XS29i</td>
<td>5.433</td>
<td>0.000</td>
<td>5.632</td>
<td>0.000</td>
<td>5.903</td>
<td>0.000</td>
<td>5.872</td>
<td>0.000</td>
</tr>
<tr>
<td>XS30</td>
<td>5.230</td>
<td>0.000</td>
<td>5.528</td>
<td>0.000</td>
<td>5.814</td>
<td>0.000</td>
<td>5.784</td>
<td>0.000</td>
</tr>
<tr>
<td>XS30i</td>
<td>5.230</td>
<td>0.000</td>
<td>5.495</td>
<td>0.000</td>
<td>5.775</td>
<td>0.000</td>
<td>5.746</td>
<td>0.000</td>
</tr>
<tr>
<td>XS31</td>
<td>5.085</td>
<td>0.000</td>
<td>5.238</td>
<td>0.000</td>
<td>5.409</td>
<td>0.000</td>
<td>5.434</td>
<td>0.000</td>
</tr>
<tr>
<td>XS31i</td>
<td>4.946</td>
<td>0.000</td>
<td>5.055</td>
<td>0.000</td>
<td>5.211</td>
<td>0.000</td>
<td>5.190</td>
<td>0.000</td>
</tr>
<tr>
<td>SX26</td>
<td>4.863</td>
<td>0.000</td>
<td>5.079</td>
<td>0.000</td>
<td>5.354</td>
<td>0.000</td>
<td>5.328</td>
<td>0.000</td>
</tr>
<tr>
<td>SX29</td>
<td>4.747</td>
<td>0.000</td>
<td>4.963</td>
<td>0.000</td>
<td>5.079</td>
<td>0.000</td>
<td>5.206</td>
<td>0.000</td>
</tr>
<tr>
<td>SX29i</td>
<td>4.694</td>
<td>0.000</td>
<td>4.933</td>
<td>0.000</td>
<td>5.086</td>
<td>0.000</td>
<td>5.244</td>
<td>0.000</td>
</tr>
<tr>
<td>SX32</td>
<td>4.631</td>
<td>0.000</td>
<td>4.876</td>
<td>0.000</td>
<td>5.207</td>
<td>0.000</td>
<td>5.171</td>
<td>0.000</td>
</tr>
<tr>
<td>SX32i</td>
<td>4.536</td>
<td>0.000</td>
<td>4.767</td>
<td>0.000</td>
<td>5.171</td>
<td>0.000</td>
<td>5.066</td>
<td>0.000</td>
</tr>
<tr>
<td>SX36</td>
<td>5.905</td>
<td>0.000</td>
<td>6.134</td>
<td>0.000</td>
<td>6.373</td>
<td>0.000</td>
<td>6.343</td>
<td>0.000</td>
</tr>
<tr>
<td>SX36_i</td>
<td>6.713</td>
<td>0.000</td>
<td>6.924</td>
<td>0.000</td>
<td>7.186</td>
<td>0.000</td>
<td>7.165</td>
<td>0.000</td>
</tr>
<tr>
<td>SX36_j</td>
<td>5.085</td>
<td>0.000</td>
<td>5.228</td>
<td>0.000</td>
<td>5.409</td>
<td>0.000</td>
<td>5.434</td>
<td>0.000</td>
</tr>
<tr>
<td>SX36_k</td>
<td>4.021</td>
<td>0.000</td>
<td>4.145</td>
<td>0.000</td>
<td>4.291</td>
<td>0.000</td>
<td>4.277</td>
<td>0.000</td>
</tr>
<tr>
<td>SX36_m</td>
<td>3.905</td>
<td>0.000</td>
<td>4.041</td>
<td>0.000</td>
<td>4.204</td>
<td>0.000</td>
<td>4.187</td>
<td>0.000</td>
</tr>
<tr>
<td>SX36_n</td>
<td>3.905</td>
<td>0.000</td>
<td>4.041</td>
<td>0.000</td>
<td>4.204</td>
<td>0.000</td>
<td>4.187</td>
<td>0.000</td>
</tr>
<tr>
<td>SX36_o</td>
<td>3.904</td>
<td>-0.001</td>
<td>4.039</td>
<td>-0.001</td>
<td>4.196</td>
<td>-0.001</td>
<td>4.182</td>
<td>-0.001</td>
</tr>
<tr>
<td>SX36_p</td>
<td>3.903</td>
<td>-0.001</td>
<td>4.038</td>
<td>-0.001</td>
<td>4.198</td>
<td>-0.001</td>
<td>4.182</td>
<td>-0.001</td>
</tr>
</tbody>
</table>

w/3254-170124-Simulation Results.xlsx
Appendix G – Flood Mapping
EXG Simulations
PLOT TITLE: MAXIMUM FLOOD DEPTH

5% AEP FLUVIAL EVENT EXISTING SITE LAYOUT (EXG)

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

LEGEND

- 2D Model Boundary

Maximum Flood Depth (m)

- 0 - 0.3
- 0.3 - 0.6
- 0.6 - 1.2
- 1.2 - 2.4
- > 2.4

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS [2017] OS 0100042840

PLOT SCALE @ A3: 1:5,000

PLOT SCALE @ A1: 1:15,000
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES
 ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE

LEGEND

- 2D Model Boundary

Maximum Flood Depth (m)

- 0 - 0.3
- 0.3 - 0.6
- 0.6 - 1.2
- 1.2 - 2.4
- > 2.4

EXISTING SITE LAYOUT (EXG)

1% AEP + 35% CC FLUVIAL EVENT

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840

CLIENT: Canterbury

PLOT TITLE: MAXIMUM FLOOD DEPTH

1% AEP + 35% CC FLUVIAL EVENT
EXISTING SITE LAYOUT (EXG)

PLOT SCALE @ A3: 1:5,000
Legend

- **2D Model Boundary**
- **Maximum Flood Depth (m)**
 - 0 - 0.3
 - 0.3 - 0.6
 - 0.6 - 1.2
 - 1.2 - 2.4
 - > 2.4

Notes:
1) All dimensions are in metres and all levels in metres above Ordnance Datum unless stated otherwise.

Maximum Flood Depth

0.1% AEP Fluvial Event

Existing Site Layout (EXG)

PLOT TITLE:

Kent County Council

CONTAINS OS DATA © Crown Copyright (2017)

OS MasterMap © Crown Copyright and Database Rights (2017) OS 0100042840

Client:

Amey

Scheme:

A28 Sturry Link Road, Canterbury

Plot Title:

Maximum Flood Depth

0.1% AEP Fluvial Event

Existing Site Layout (EXG)

Plot Status:

Final

Plot Scale @ A3:

1:5,000
LEGEND

- 2D Model Boundary

Maximum Velocity (m/s)

- 0.0 - 0.3
- 0.3 - 0.6
- 0.6 - 0.9
- 0.9 - 1.2
- > 1.2

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
LEGEND

- 2D Model Boundary
- Maximum Velocity (m/s)
 - 0.0 - 0.3
 - 0.3 - 0.6
 - 0.6 - 0.9
 - 0.9 - 1.2
 - > 1.2

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
LEGEND

- 2D Model Boundary

Maximum Flood Hazard Rating (FD2320)

- < 0.75 (Caution)
- 0.75 - 1.25 (Danger for Some)
- 1.25 - 2 (Danger for Most)
- > 2.0 (Danger for All)

NOTES:

1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE

CONTAINS OS DATA © CROWN COPYRIGHT (2017)

OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
MAXIMUM FLOOD HAZARD

1% AEP FLUVIAL EVENT
EXISTING SITE LAYOUT (EXG)

PLOT SCALE @ A3: 1:5,000

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE

LEGEND

2D Model Boundary

Maximum Flood Hazard Rating (FD2320)

< 0.75 (Caution)
0.75 - 1.25 (Danger for Some)
1.25 - 2 (Danger for Most)
> 2.0 (Danger for All)

~ Contains OS data © Crown Copyright (2017)
~ OS MasterMap © Crown Copyright and Database Rights (2017) OS 0100042840
PLOT TITLE: MAXIMUM FLOOD HAZARD
EXISTING SITE LAYOUT (EXG)

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

LEGEND

2D Model Boundary
Maximum Flood Hazard Rating (FD2320)

- < 0.75 (Caution)
- 0.75 - 1.25 (Danger for Some)
- 1.25 - 2 (Danger for Most)
- > 2.0 (Danger for All)

EXISTING SITE LAYOUT (EXG)
1% AEP + 35% CC FLUVIAL EVENT

PLOT SCALE @ A3: 1:10,000

CLIENT: Kent County Council

SCHEME: A28 STURRY LINK ROAD, CANTERBURY

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840

0 0.1 0.2 0.4 0.6 0.8 1 km
0 50 100 200 300 400 500 m

PLOT SCALE @ A3: 1:5,000

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840

0 0.1 0.2 0.4 0.6 0.8 1 km
0 50 100 200 300 400 500 m

PLOT SCALE @ A3: 1:10,000

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840

0 0.1 0.2 0.4 0.6 0.8 1 km
0 50 100 200 300 400 500 m
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDINANCE DATUM UNLESS STATED OTHERWISE.

PLOT TITLE: MAXIMUM FLOOD HAZARD
EXISTING SITE LAYOUT (EXG)

LEGEND
- 2D Model Boundary

Maximum Flood Hazard Rating (FD2320)
- < 0.75 (Caution)
- 0.75 - 1.25 (Danger for Some)
- 1.25 - 2 (Danger for Most)
- > 2.0 (Danger for All)

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
DEV1 Simulations
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

LEGEND

- 2D Model Boundary
- --- Proposed Link Road DEV1 (for info)

Maximum Flood Depth (m)

- 0 - 0.3
- 0.3 - 0.6
- 0.6 - 1.2
- 1.2 - 2.4
- > 2.4

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS [2017] OS 0100042840
PLOT TITLE: MAXIMUM DEPTH DIFFERENCE

EXG vs DEV1

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE

2D Model Boundary
Proposed Link Road DEV1 (for info)

Maximum Depth Variation

> +100mm
+50mm to +100mm
+20mm to +50mm
No Change (+/-20mm)
-20mm to -50mm
-50mm to -100mm
> -100mm

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 010002840

client: Kent County Council
DATE: 23/01/2017
PLOT NAME: w3254-Q100_DEV1_D
REV: B
DRAWN: SB
CHECKED: EW
APPROVED: RCL
PLOT SCALE @ A3: UNLESS STATED OTHERWISE
1:10,000
PLOT STATUS: FINAL
PLOT TITLE: MAXIMUM FLOOD DEPTH
SCHEME: A28 STURRY LINK ROAD, CANTERBURY

LEGEND
- 2D Model Boundary
- Proposed Link Road DEV1 (for info)

Maximum Flood Depth (m)
- 0 - 0.3
- 0.3 - 0.6
- 0.6 - 1.2
- 1.2 - 2.4
- > 2.4

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE
±

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS [2017] OS 0100042840
MAXIMUM DEPTH DIFFERENCE

A28 STURRY LINK ROAD, CANTERBURY

1% AEP FLUVIAL EVENT
EXG vs DEV1

PLOT SCALE @ A3: 1:5,000
LEGEND

- 2D Model Boundary
- Proposed Link Road DEV1 (for info)

Maximum Flood Depth (m)

- 0 - 0.3
- 0.3 - 0.6
- 0.6 - 1.2
- 1.2 - 2.4
- > 2.4

NOTES:

1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS [2017] OS 0100042840
LEGEND

- 2D Model Boundary
- --- Proposed Link Road DEV1 (for info)

Maximum Depth Variation

- > +100mm
- +50mm to +100mm
- +20mm to +50mm
- No Change (+/-20mm)
- -20mm to -50mm
- -50mm to -100mm
- > -100mm

NOTES:

1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

LEGEND

- 2D Model Boundary
- Proposed Link Road DEV1 (for info)

Maximum Flood Depth (m)

- 0 - 0.3
- 0.3 - 0.6
- 0.6 - 1.2
- 1.2 - 2.4
- > 2.4

PLOT TITLE:
MAXIMUM FLOOD DEPTH

SCHEME:
A28 STURRY LINK ROAD, CANTERBURY

CLIENT:
LEGEND
2D Model Boundary
Proposed Link Road DEV1 (for info)
Maximum Flood Depth (m)
0 - 0.3
0.3 - 0.6
0.6 - 1.2
1.2 - 2.4
> 2.4

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

0 ±

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840

OS 0100042840
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

0.1% AEP FLUVIAL EVENT
EXG vs DEV1

PLOT TITLE: MAXIMUM DEPTH DIFFERENCE

PLOT NAME: w3254-Q1000_DEV1_D_DIFF

LEGEND

- 2D Model Boundary
- Proposed Link Road DEV1 (for info)

Maximum Depth Variation

- > +100mm
- +50mm to +100mm
- +20mm to +50mm
- No Change (+/-20mm)
- -20mm to -50mm
- -50mm to -100mm
- > -100mm

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
PLOT TITLE: MAXIMUM VELOCITY
1% AEP FLUVIAL EVENT DEVELOPMENT SITE LAYOUT (DEV1)

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

SCALE: 1:5,000

CLIENT: LEGEND

- 2D Model Boundary
- Proposed Link Road DEV1 (for info)

MAXIMUM VELOCITY (m/s)

- 0.0 - 0.3
- 0.3 - 0.6
- 0.6 - 0.9
- 0.9 - 1.2
- > 1.2

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

SCHEME:
A28 STURRY LINK ROAD, CANTERBURY

CLIENT:
Kent County Council

FURTHER NOTE:
1% AEP + 35% CC FLUVIAL EVENT DEVELOPMENT SITE LAYOUT (DEV1)

PLOT TITLE:
MAXIMUM VELOCITY

PLOT SCALE @ A3: 1:5,000

DATE:
23/01/2017

DRAWN:
SB
CHECKED:
EW
APPROVED:
RCL

PLOT STATUS:
FINAL

PLOT NAME:
w3254-Q100CC_DEV1_V

LEGEND

2D Model Boundary

- Proposed Link Road DEV1 (for info)

Maximum Velocity (m/s)

<table>
<thead>
<tr>
<th>Velocity Range</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 - 0.3</td>
<td>Green</td>
</tr>
<tr>
<td>0.3 - 0.6</td>
<td>Yellow</td>
</tr>
<tr>
<td>0.6 - 0.9</td>
<td>Orange</td>
</tr>
<tr>
<td>0.9 - 1.2</td>
<td>Red</td>
</tr>
<tr>
<td>> 1.2</td>
<td>Grey</td>
</tr>
</tbody>
</table>

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840
NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE.

LEGEND

2D Model Boundary
Proposed Link Road DEV1 (for info)

Maximum Flood Hazard Rating (FD2320)

- < 0.75 (Caution)
- 0.75 - 1.25 (Danger for Some)
- 1.25 - 2 (Danger for Most)
- > 2.0 (Danger for All)

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0
50
100
150
200
250
300
350
400
450
500

km
m

DATE: 23/01/2017
PLOT NAME: w3254-Q20_DEV1_H
REV: B
DRAWN: SB
CHECKED: EW
APPROVED: RCL
PLOT SCALE @ A3: 1:10,000
PLOT STATUS: FINAL
PLOT TITLE: MAXIMUM FLOOD HAZARD

SCHEME: A28 STURRY LINK ROAD, CANTERBURY

CLIENT: KENT COUNTY COUNCIL

CONSULTANTS: AMEY WATERCO

PLOT TITLE: MAXIMUM FLOOD HAZARD
5% AEP FLUVIAL EVENT
DEVELOPMENT SITE LAYOUT (DEV1)

PLOT SCALE @ A3: 1:5,000

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS [2017] OS 0100042840
PLOT TITLE: MAXIMUM FLOOD HAZARD

1% AEP FLUVIAL EVENT DEVELOPMENT SITE LAYOUT (DEV1)

PLOT STATUS: FINAL

DATE: 23/01/2017

PLOT SCALE @ A3: 1:10,000

NOTES:
1) ALL DIMENSIONS ARE IN METRES AND ALL LEVELS IN METRES ABOVE ORDNANCE DATUM UNLESS STATED OTHERWISE

VALUES:
- < 0.75 (Caution)
- 0.75 - 1.25 (Danger for Some)
- 1.25 - 2 (Danger for Most)
- > 2.0 (Danger for All)

SCALE: 1:5,000

LEGEND
- 2D Model Boundary
- Proposed Link Road DEV1 (for info)

MAXIMUM FLOOD HAZARD RATING (FD2320)

CLIENT: LEGEND

SYMBOLS:
- 2D Model Boundary
- Proposed Link Road DEV1 (for info)

LEGEND:
- Maximum Flood Hazard Rating (FD2320)
 - < 0.75 (Caution)
 - 0.75 - 1.25 (Danger for Some)
 - 1.25 - 2 (Danger for Most)
 - > 2.0 (Danger for All)

NOTE:
- All data is for information purposes only and may not be accurate.

CONTAINS OS DATA © CROWN COPYRIGHT (2017)
OS MASTERMAP © CROWN COPYRIGHT AND DATABASE RIGHTS (2017) OS 0100042840